Two-photon imaging during prolonged middle cerebral artery occlusion in mice reveals recovery of dendritic structure after reperfusion.
نویسندگان
چکیده
Filament occlusion of the middle cerebral artery (MCA) is a well accepted animal model of focal ischemia. Advantages of the model are relatively long occlusion times and a large penumbra region that simulates aspects of human stroke. Here, we use two-photon and confocal microscopy in combination with regional measurement of blood flow using laser speckle to assess the spatial relationship between the borders of the MCA ischemic territory and loss of dendrite structure, as well as the effect of reperfusion on dendritic damage in adult YFP (yellow fluorescent protein) and GFP (green fluorescent protein) C57BL/6 transgenic mice with fluorescent (predominantly layer 5) neurons. By examining the spatial extent of dendritic damage, we determined that 60 min of MCA occlusion produced a core with severe structural damage that did not recover after reperfusion (begins approximately 3.8 mm lateral to midline), a reversibly damaged area up to 0.6 mm medial to the core that recovered after reperfusion (penumbra), and a relatively structurally intact area ( approximately 1 mm wide; medial penumbra) with hypoperfusion. Loss of structure was preceded by a single ischemic depolarization 122.1 +/- 10.2 s after occlusion onset. Reperfusion of animals after 60 min of ischemia was not associated with exacerbation of damage (reperfusion injury) and resulted in a significant restoration of blebbed dendritic structure, but only within approximately 0.6 mm lateral of the dendritic damage structural border. In summary, we find that recovery of dendritic structure can occur after reperfusion after even 60 min of ischemia, but is likely restricted to a relatively small penumbra region with partial blood flow or oxygenation.
منابع مشابه
Poly(ADP-ribose) polymerase impairs early and long-term experimental stroke recovery.
BACKGROUND AND PURPOSE Poly(ADP-ribose) polymerase (PARP-1; Enzyme Commission 2.4.30) is a nuclear DNA repair enzyme that mediates early neuronal ischemic injury. Using novel 3-dimensional, fast spin-echo-based diffusion-weighted imaging, we compared acute (21 hours) and long-term (3 days) ischemic volume after middle cerebral artery (MCA) occlusion in PARP-1-null mutants (PARP-/-) versus genet...
متن کاملActive dilation of penetrating arterioles restores red blood cell flux to penumbral neocortex after focal stroke.
Pial arterioles actively change diameter to regulate blood flow to the cortex. However, it is unclear whether arteriole reactivity and its homeostatic role of conserving red blood cell (RBC) flux remains intact after a transient period of ischemia. To examine this issue, we measured vasodynamics in pial arteriole networks that overlie the stroke penumbra during transient middle cerebral artery ...
متن کاملStratification of heterogeneous diffusion MRI ischemic lesion with kurtosis imaging: evaluation of mean diffusion and kurtosis MRI mismatch in an animal model of transient focal ischemia.
BACKGROUND AND PURPOSE Ischemic tissue damage is heterogeneous, resulting in complex patterns in the widely used diffusion-weighted MRI. Our study examined the spatiotemporal characteristics of diffusion kurtosis imaging in an animal model of transient middle cerebral artery occlusion. METHODS Adult male Wistar rats (N=18) were subjected to 90 minutes middle cerebral artery occlusion. Multipa...
متن کاملMannose-binding lectin promotes local microvascular thrombosis after transient brain ischemia in mice.
BACKGROUND AND PURPOSE Several lines of evidence support the involvement of mannose-binding lectin (MBL) in stroke brain damage. The lectin pathway of the complement system facilitates thrombin activation and clot formation under certain experimental conditions. In the present study, we examine whether MBL promotes thrombosis after ischemia/reperfusion and influences the course and prognosis of...
متن کاملDelayed reperfusion deficits after experimental stroke account for increased pathophysiology
Cerebral blood flow and oxygenation in the first few hours after reperfusion following ischemic stroke are critical for therapeutic interventions but are not well understood. We investigate changes in oxyhemoglobin (HbO2) concentration in the cortex during and after ischemic stroke, using multispectral optical imaging in anesthetized mice, a remote filament to induce either 30 minute middle cer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 46 شماره
صفحات -
تاریخ انتشار 2008